Mesh#

See Mesh in MIKE IO Documentation

import numpy as np
import matplotlib.pyplot as plt
import mikeio

A simple mesh#

Let’s consider a simple mesh consisting of 2 triangular elements.

fn = "data/two_elements.mesh"
with open(fn, "r") as f:
    print(f.read())
100079 1000 4  UTM-31
1 0.0 0.0 -10.0 1 
2 3.0 0.0 -10.0 2 
3 3.0 3.0 -10.0 2 
4 0.0 3.0 -10.0 1 
2 3 21
1 1 2 4
2 2 3 4 
msh = mikeio.open(fn)
msh
<Mesh>
number of nodes: 4
number of elements: 2
projection: UTM-31
msh.plot(show_mesh=True);
_images/5a4802f9b0e6f1e5b52dcf16e912a5390e246c756545a7a72f32d10fb8d76e49.png
msh.geometry
Flexible Mesh Geometry: Dfsu2D
number of nodes: 4
number of elements: 2
projection: UTM-31
msh.node_coordinates
array([[  0.,   0., -10.],
       [  3.,   0., -10.],
       [  3.,   3., -10.],
       [  0.,   3., -10.]])
msh.element_table
[array([0, 1, 3], dtype=int32), array([1, 2, 3], dtype=int32)]
msh.element_coordinates
array([[  1.,   1., -10.],
       [  2.,   2., -10.]])
msh.geometry.get_element_area()
array([4.5, 4.5])

Let’s plot the node and element coordinates:

xn, yn = msh.node_coordinates[:,0], msh.node_coordinates[:,1]
xe, ye = msh.element_coordinates[:,0], msh.element_coordinates[:,1]

ax = msh.plot(show_mesh=True)
ax.plot(xn, yn, 'ro', markersize=10)
ax.plot(xe, ye, 'bx', markersize=10)
[<matplotlib.lines.Line2D at 0x7f722ecc1a90>]
_images/ae1528f775212721ceee8d67a9e94b86f5c00b01382d85cdca08d1bb90fce88f.png

Boundary polylines#

It can sometimes be convenient to have mesh boundary as a polyline (or multiple in case of more complex meshes).

bxy = msh.geometry.boundary_polylines.exteriors[0].xy
plt.plot(bxy[:,0], bxy[:,1])
plt.axis("equal");
/opt/hostedtoolcache/Python/3.11.14/x64/lib/python3.11/site-packages/mikeio/spatial/_FM_geometry.py:802: FutureWarning: boundary_polylines is renamed to boundary_polygons
  warnings.warn(
_images/9d4c660602d6e01c0be7d75591d9fa06955eb6dc41792892ee3f2fc87702fbb9.png

Inside domain?#

MIKE IO has a method for determining if a point (or a list of points) is inside the domain:

  • contains()

pt_1 = [2.0, 1.2]
msh.geometry.contains(pt_1)[0]
np.True_
# or multiple points at the same time
pt_2 = [4.0, 1.2]
pts = np.array([pt_1, pt_2])
msh.geometry.contains(pts)
array([ True, False])
plt.plot(bxy[:,0], bxy[:,1], label='boundary')
plt.plot(xe[0], ye[0], 'b*', markersize=10, label="center, elem 0")
plt.plot(xe[1], ye[1], 'c*', markersize=10, label="center, elem 1")
plt.plot(*pt_1, 'go', markersize=10, label="pt_1")
plt.plot(*pt_2, 'rs', markersize=10, label="pt_2")
plt.axis("equal")
plt.legend(loc="upper right");
_images/dd9230965a03ecfb6bf6f300f5c2bd55f9eacde58a8ac87c78073aa69ab70d4e.png

Find element containing point#

MIKE IO has a method for obtaining the index of the element containing a point:

  • find_index()

g = msh.geometry
g.find_index(coords=pt_1)[0]
np.int64(1)

MIKE IO also has a method for obtaining a list of the n closest element centers:

  • find_nearest_elements()

g.find_nearest_elements(pt_1)
1
g.find_nearest_elements(pt_1, return_distances=True)
(1, 0.8)
g.find_nearest_elements(pt_1, n_nearest=2)
array([1, 0])
# for multiple points
g.find_nearest_elements(pts, return_distances=True)
(array([1, 1]), array([0.8       , 2.15406592]))

A larger mesh#

dfs = mikeio.open("data/FakeLake.dfsu")
g = dfs.geometry
g
Flexible Mesh Geometry: Dfsu2D
number of nodes: 798
number of elements: 1011
projection: PROJCS["UTM-17",GEOGCS["Unused",DATUM["UTM Projections",SPHEROID["WGS 1984",6378137,298.257223563]],PRIMEM["Greenwich",0],UNIT["Degree",0.0174532925199433]],PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000],PARAMETER["False_Northing",0],PARAMETER["Central_Meridian",-81],PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_Of_Origin",0],UNIT["Meter",1]]
g.plot();
_images/b137616cfd2b2b90c920d675569c2747445221057b7fd2aca377e7afb20e3d71.png

Inline Exercise#

  1. please check if the point A: (x,y)=(-0.5, 0.0) is inside the mesh

  2. please check if the point B: (x,y)=(-0.5, 0.4) is inside the mesh

  3. find index of the 5 closest points to B

# insert code here
g.max_nodes_per_element
4

Change depth#

msh = mikeio.open("data/FakeLake.dfsu").geometry
msh.plot();
_images/b137616cfd2b2b90c920d675569c2747445221057b7fd2aca377e7afb20e3d71.png
msh.node_coordinates[:,2] = np.clip(msh.node_coordinates[:,2], -15, 0) # clip depth to interval [-15,0]


msh.plot(title="No change??")
<Axes: title={'center': 'No change??'}, xlabel='Easting [m]', ylabel='Northing [m]'>
_images/c2db7128127da8d728bccf9e4d44331bd78c34b6ebe10d7291301e9bc87e4e68.png
del msh.element_coordinates # remove cached element coords calculated based on original node coords)
msh.plot(title="Updated")
<Axes: title={'center': 'Updated'}, xlabel='Easting [m]', ylabel='Northing [m]'>
_images/f450e4052eb531c3d1b0d65df706580242c74e28bb8f8b335e812b525612588e.png
msh.to_mesh('Fake_lake_clip15.mesh')   # save to a new file

Visualisation#

msh = mikeio.open("data/southern_north_sea.mesh")
msh
<Mesh>
number of nodes: 570
number of elements: 958
projection: LONG/LAT

The default is to plot the elements and color them according to the bathymetry.

msh.plot();
_images/9e72836cd033bcb4ad5abc5eb934441d9df3af59047cd3db2ff5e40fcf395820.png
msh.plot.outline();
_images/5c3b9c7801d97fe5ebd3c471951ab56872cf13090eb303e7ef2ab2e31f09a88d.png
msh.plot.mesh();
_images/d97daa09edb9759cf158c2d2b9cc5f19af9d4d57300bc1ba9e605bca215fb3e8.png

Maybe we would like to higlight the bathymetric variations in some range, in this case in the -40, -20m range.

msh.plot(vmin=-40, vmax=-20);
_images/222a41a8108c223ad2283742db510d20f98845ba6a907968b105f424b01e3a0d.png

There are other options as well, such as explicit specification of which contour lines to show or choosing a specific colormap (matplotlib colormaps)

msh.plot.contour(show_mesh=True, 
         levels=[-50,-30,-20,-10,-5], cmap="tab10",
         figsize=(12,12), title="Coarse North Sea model");
_images/3446b2cfa505962d938843c4bacc94c32701e6c5cc9c68871a3543c9ee4d5df7.png

See more in the MIKE IO User guide section on Mesh for more Mesh operations (including shapely operations).