skill_grid.SkillGrid

skill_grid.SkillGrid(self, data)

Spatially gridded skill data.

Gridded skill object for analysis and visualization of spatially gridded skill data. The object wraps the xr.DataSet class which can be accessed from the attribute data.

The object contains one or more “arrays” of skill metrics, each corresponding to a single metric (e.g. bias, rmse, r2). The arrays are indexed by the metric name, e.g. ss["bias"] or ss.bias.

Examples

>>> gs = cc.gridded_skill()
>>> gs.metrics
['n', 'bias', 'rmse', 'urmse', 'mae', 'cc', 'si', 'r2']
>>> gs.mod_names
['SW_1', 'SW_2']
>>> gs.sel(model='SW_1').rmse.plot()

Attributes

Name Description
coords Coordinates (same as xr.DataSet.coords)
metrics List of metrics (=data vars)
mod_names List of model names
obs_names List of observation names
x x-coordinate values
y y-coordinate values

Methods

Name Description
sel Select a model from the SkillGrid
to_dataframe Convert gridded skill data to pandas DataFrame

sel

skill_grid.SkillGrid.sel(model)

Select a model from the SkillGrid

Parameters

Name Type Description Default
model str Name of model to select required

Returns

Name Type Description
SkillGrid SkillGrid with only the selected model

to_dataframe

skill_grid.SkillGrid.to_dataframe()

Convert gridded skill data to pandas DataFrame

Returns

Name Type Description
pd.DataFrame data as a pandas DataFrame