PointModelResult
PointModelResult(self,
data,*,
=None,
name=None,
x=None,
y=None,
z=None,
item=None,
quantity=None,
aux_items )
Model result for a single point location.
Construct a PointModelResult from a 0d data source: dfs0 file, mikeio.Dataset/DataArray, pandas.DataFrame/Series or xarray.Dataset/DataArray
Parameters
Name | Type | Description | Default |
---|---|---|---|
data | (str, Path, mikeio.Dataset, mikeio.DataArray, pd.DataFrame, pd.Series, xr.Dataset or xr.DataArray) | filename (.dfs0 or .nc) or object with the data | required |
name | Optional[str] | The name of the model result, by default None (will be set to file name or item name) | None |
x | float | first coordinate of point position, inferred from data if not given, else None | None |
y | float | second coordinate of point position, inferred from data if not given, else None | None |
z | float | third coordinate of point position, inferred from data if not given, else None | None |
item | str | int | None | If multiple items/arrays are present in the input an item must be given (as either an index or a string), by default None | None |
quantity | Quantity | Model quantity, for MIKE files this is inferred from the EUM information | None |
aux_items | Optional[list[int | str]] | Auxiliary items, by default None | None |
Attributes
Name | Description |
---|---|
gtype | Geometry type |
n_points | Number of data points |
name | Name of time series (value item name) |
plot | Plot using the ComparerPlotter |
quantity | Quantity of time series |
time | Time index |
values | Values as numpy array |
x | x-coordinate |
y | y-coordinate |
Methods
Name | Description |
---|---|
equals | Check if two TimeSeries are equal |
interp_time | Interpolate model result to the time of the observation |
sel | Select data by label |
to_dataframe | Convert matched data to pandas DataFrame |
trim | Trim observation data to a given time interval |
equals
PointModelResult.equals(other)
Check if two TimeSeries are equal
interp_time
**kwargs) PointModelResult.interp_time(observation,
Interpolate model result to the time of the observation
wrapper around xarray.Dataset.interp()
Parameters
Name | Type | Description | Default |
---|---|---|---|
observation | Observation | The observation to interpolate to | required |
**kwargs | Any | Additional keyword arguments passed to xarray.interp | {} |
Returns
Name | Type | Description |
---|---|---|
PointModelResult | Interpolated model result |
sel
**kwargs) PointModelResult.sel(
Select data by label
to_dataframe
PointModelResult.to_dataframe()
Convert matched data to pandas DataFrame
Include x, y coordinates only if gtype=track
Returns
Name | Type | Description |
---|---|---|
pd.DataFrame | data as a pandas DataFrame |
trim
=None, end_time=None, buffer='1s') PointModelResult.trim(start_time
Trim observation data to a given time interval
Parameters
Name | Type | Description | Default |
---|---|---|---|
start_time | pd.Timestamp | start time | None |
end_time | pd.Timestamp | end time | None |
buffer | str | buffer time around start and end time, by default “1s” | '1s' |