Res1D - basic

Extract res1d results for a collection system or river to a pandas DataFrame.
import mikeio1d

Res1D

# Check contents
res = mikeio1d.open("../data/network.res1d")
res.info()
Start time: 1994-08-07 16:35:00
End time: 1994-08-07 18:35:00
# Timesteps: 110
# Catchments: 0
# Nodes: 119
# Reaches: 118
# Globals: 0
0 - Water level (m)
1 - Discharge (m^3/s)
# Extract results to a pandas DataFrame
df = res.read()
df.head()
WaterLevel:1 WaterLevel:2 WaterLevel:3 WaterLevel:4 WaterLevel:5 WaterLevel:6 WaterLevel:7 WaterLevel:8 WaterLevel:9 WaterLevel:10 ... Discharge:99l1:22.2508 WaterLevel:9l1:0 WaterLevel:9l1:10 Discharge:9l1:5 WaterLevel:Weir:119w1:0 WaterLevel:Weir:119w1:1 Discharge:Weir:119w1:0.5 WaterLevel:Pump:115p1:0 WaterLevel:Pump:115p1:82.4281 Discharge:Pump:115p1:41.214
1994-08-07 16:35:00.000 195.052994 195.821503 195.8815 193.604996 193.615005 193.625000 193.675003 193.764999 193.774994 193.804993 ... 0.000002 193.774994 193.764999 0.000031 193.550003 188.479996 0.0 193.304993 195.005005 0.0
1994-08-07 16:36:01.870 195.052994 195.821701 195.8815 193.604996 193.615005 193.625320 193.675110 193.765060 193.775116 193.804993 ... 0.000002 193.775070 193.765060 0.000031 193.550003 188.479996 0.0 193.306061 195.005005 0.0
1994-08-07 16:37:07.560 195.052994 195.821640 195.8815 193.604996 193.615005 193.625671 193.675369 193.765106 193.775513 193.804993 ... 0.000002 193.775391 193.765106 0.000033 193.550034 188.479996 0.0 193.307144 195.005005 0.0
1994-08-07 16:38:55.828 195.052994 195.821503 195.8815 193.604996 193.615005 193.626236 193.675751 193.765228 193.776077 193.804993 ... 0.000002 193.775894 193.765228 0.000037 193.550079 188.479996 0.0 193.308884 195.005005 0.0
1994-08-07 16:39:55.828 195.052994 195.821503 195.8815 193.604996 193.615005 193.626556 193.675949 193.765335 193.776352 193.804993 ... 0.000002 193.776154 193.765335 0.000039 193.550095 188.479996 0.0 193.309860 195.005005 0.0

5 rows × 495 columns

Reaches

# See info related to nodes
res.reaches
<ResultReaches> (118)
Quantities (2)
  • Water level (m)
  • Discharge (m^3/s)
Derived Quantities (6)
  • ReachAbsoluteDischarge
  • ReachFilling
  • ReachFlooding
  • ReachQQManning
  • ReachWaterDepth
  • ReachWaterLevelAboveCritical
# Get reach water levels
df_reaches = res.reaches.WaterLevel.read()
df_reaches.head()
WaterLevel:100l1:0 WaterLevel:100l1:47.6827 WaterLevel:101l1:0 WaterLevel:101l1:66.4361 WaterLevel:102l1:0 WaterLevel:102l1:10.9366 WaterLevel:103l1:0 WaterLevel:103l1:26.0653 WaterLevel:104l1:0 WaterLevel:104l1:34.4131 ... WaterLevel:98l1:0 WaterLevel:98l1:16.0098 WaterLevel:99l1:0 WaterLevel:99l1:44.5016 WaterLevel:9l1:0 WaterLevel:9l1:10 WaterLevel:Weir:119w1:0 WaterLevel:Weir:119w1:1 WaterLevel:Pump:115p1:0 WaterLevel:Pump:115p1:82.4281
1994-08-07 16:35:00.000 195.441498 194.661499 195.931503 195.441498 193.550003 193.550003 195.801498 195.701508 197.072006 196.962006 ... 194.581497 194.511505 194.661499 194.581497 193.774994 193.764999 193.550003 188.479996 193.304993 195.005005
1994-08-07 16:36:01.870 195.441498 194.661621 195.931503 195.441605 193.550140 193.550064 195.801498 195.703171 197.072006 196.962051 ... 194.581497 194.511841 194.661575 194.581497 193.775070 193.765060 193.550003 188.479996 193.306061 195.005005
1994-08-07 16:37:07.560 195.441498 194.661728 195.931503 195.441620 193.550232 193.550156 195.801498 195.703400 197.072006 196.962082 ... 194.581497 194.511795 194.661667 194.581497 193.775391 193.765106 193.550034 188.479996 193.307144 195.005005
1994-08-07 16:38:55.828 195.441498 194.661804 195.931503 195.441605 193.550369 193.550308 195.801498 195.703690 197.072006 196.962112 ... 194.581497 194.511581 194.661865 194.581497 193.775894 193.765228 193.550079 188.479996 193.308884 195.005005
1994-08-07 16:39:55.828 195.441498 194.661972 195.931503 195.441605 193.550430 193.550369 195.801498 195.703827 197.072006 196.962128 ... 194.581497 194.511505 194.661911 194.581497 193.776154 193.765335 193.550095 188.479996 193.309860 195.005005

5 rows × 247 columns

# Plot water levels for a specific reach
res.reaches['100l1'].WaterLevel.plot()

# See info related to a specific reach
res.reaches['100l1']
<Reach: 100l1>
Attributes (9)
  • name: 100l1
  • length: 47.6827148432828
  • start_chainage: 0.0
  • end_chainage: 47.6827148432828
  • n_gridpoints: 3
  • start_node: 100
  • end_node: 99
  • height: 0.30000001192092896
  • full_flow_discharge: 0.12058743359507902
Quantities (2)
  • Water level (m)
  • Discharge (m^3/s)
Derived Quantities (6)
  • ReachAbsoluteDischarge
  • ReachFilling
  • ReachFlooding
  • ReachQQManning
  • ReachWaterDepth
  • ReachWaterLevelAboveCritical

Grid points

# See grid point info for a reach by chainage
res.reaches['100l1']['47.683']
<ResultGridPoint>
Attributes (5)
  • reach_name: 100l1
  • chainage: 47.6827148432828
  • xcoord: -687907.999206543
  • ycoord: -1056412.0
  • bottom_level: 194.66000366210938
Quantities (1)
  • Water level (m)
Derived Quantities (0)
    # Alternatively, index grid points by index number (e.g. '0' for first, '-1' for last, etc.).
    res.reaches['100l1'][-1]
    <ResultGridPoint>
    Attributes (5)
    • reach_name: 100l1
    • chainage: 47.6827148432828
    • xcoord: -687907.999206543
    • ycoord: -1056412.0
    • bottom_level: 194.66000366210938
    Quantities (1)
    • Water level (m)
    Derived Quantities (0)
      # Plot water level at a gridpoint
      res.reaches['100l1'][0].WaterLevel.plot()

      Nodes

      # See info related to nodes
      res.nodes
      <ResultNodes> (119)
      Quantities (1)
      • Water level (m)
      Derived Quantities (3)
      • NodeFlooding
      • NodeWaterDepth
      • NodeWaterLevelAboveCritical
      # Get node water levels
      df_nodes = res.nodes.WaterLevel.read()
      df_nodes.head()
      WaterLevel:1 WaterLevel:2 WaterLevel:3 WaterLevel:4 WaterLevel:5 WaterLevel:6 WaterLevel:7 WaterLevel:8 WaterLevel:9 WaterLevel:10 ... WaterLevel:46 WaterLevel:55 WaterLevel:58 WaterLevel:116 WaterLevel:117 WaterLevel:118 WaterLevel:115 WaterLevel:119 WaterLevel:120 WaterLevel:Weir Outlet:119w1
      1994-08-07 16:35:00.000 195.052994 195.821503 195.8815 193.604996 193.615005 193.625000 193.675003 193.764999 193.774994 193.804993 ... 194.074997 195.005005 193.554993 193.550003 193.585007 193.585007 193.304993 193.550003 193.550003 193.779999
      1994-08-07 16:36:01.870 195.052994 195.821701 195.8815 193.604996 193.615005 193.625320 193.675110 193.765060 193.775116 193.804993 ... 194.074997 195.005005 193.555023 193.550064 193.585831 193.586807 193.306061 193.550003 193.550003 188.479996
      1994-08-07 16:37:07.560 195.052994 195.821640 195.8815 193.604996 193.615005 193.625671 193.675369 193.765106 193.775513 193.804993 ... 194.074997 195.005005 193.555084 193.550110 193.586426 193.588196 193.307144 193.550034 193.550003 188.479996
      1994-08-07 16:38:55.828 195.052994 195.821503 195.8815 193.604996 193.615005 193.626236 193.675751 193.765228 193.776077 193.804993 ... 194.074997 195.005005 193.555191 193.550156 193.586960 193.589706 193.308884 193.550079 193.550003 188.479996
      1994-08-07 16:39:55.828 195.052994 195.821503 195.8815 193.604996 193.615005 193.626556 193.675949 193.765335 193.776352 193.804993 ... 194.074997 195.005005 193.555267 193.550171 193.587112 193.590317 193.309860 193.550095 193.550003 188.479996

      5 rows × 119 columns

      # Plot water level of specific node
      res.nodes['1'].WaterLevel.plot()

      # See info related to a specific node
      res.nodes['1']
      <Manhole: 1>
      Attributes (8)
      • id: 1
      • type: Manhole
      • xcoord: -687934.6000976562
      • ycoord: -1056500.69921875
      • ground_level: 197.07000732421875
      • bottom_level: 195.0500030517578
      • critical_level: inf
      • diameter: 1.0
      Quantities (1)
      • Water level (m)
      Derived Quantities (3)
      • NodeFlooding
      • NodeWaterDepth
      • NodeWaterLevelAboveCritical

      Catchments

      # See info related to catchments
      res = mikeio1d.open("../data/catchments.res1d")
      res.catchments
      <ResultCatchments> (31)
      Quantities (5)
      • Total Runoff (m^3/s)
      • Actual Rainfall (m/s)
      • Zink, Load, RR (kg/s)
      • Zink, Mass, Accumulated, RR (kg)
      • Zink, RR (mg/l)
      Derived Quantities (0)
        # Extract runoff to a pandas DataFrame
        df = res.catchments.TotalRunOff.read()
        df.head()
        TotalRunOff:100_16_16 TotalRunOff:105_1_1 TotalRunOff:10_22_22 TotalRunOff:113_21_21 TotalRunOff:118_30_30 TotalRunOff:119_32_32 TotalRunOff:14_20_20 TotalRunOff:20_2_2 TotalRunOff:22_8_8 TotalRunOff:25_26_26 ... TotalRunOff:64_12_12 TotalRunOff:67_18_18 TotalRunOff:6_25_25 TotalRunOff:76_7_7 TotalRunOff:79_10_10 TotalRunOff:82_27_27 TotalRunOff:84_15_15 TotalRunOff:90_28_28 TotalRunOff:94_9_9 TotalRunOff:9_3_3
        1994-08-07 16:35:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
        1994-08-07 16:36:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
        1994-08-07 16:37:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
        1994-08-07 16:38:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
        1994-08-07 16:39:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

        5 rows × 31 columns

        # Plot runoff for a specific catchment
        df = res.catchments['20_2_2'].TotalRunOff.plot()

        Dynamic selections

        # Dynamically select results to extract into a pandas DataFrame.
        res = mikeio1d.open("../data/network.res1d")
        
        res.reaches['100l1'].Discharge.add()
        res.reaches['101l1'].Discharge.add()
        res.nodes['1'].WaterLevel.add()
        df = res.read()
        df.head()
        Discharge:100l1:23.8414 Discharge:101l1:33.218 WaterLevel:1
        1994-08-07 16:35:00.000 0.000006 0.000004 195.052994
        1994-08-07 16:36:01.870 0.000006 0.000004 195.052994
        1994-08-07 16:37:07.560 0.000006 0.000004 195.052994
        1994-08-07 16:38:55.828 0.000006 0.000004 195.052994
        1994-08-07 16:39:55.828 0.000006 0.000004 195.052994