Res1D - long term statistics (LTS)

Read and plot LTS results.
import mikeio1d

Event statistics

res = mikeio1d.open("../data/lts_event_statistics.res1d")
res.info()
Start time: 1957-01-01 00:00:00
End time: 1963-01-01 00:00:00
# Timesteps: 10
# Catchments: 0
# Nodes: 16
# Reaches: 17
# Globals: 0
0 - Water level, Maximum (m)
1 - Water level, Maximum, Time (sec)
2 - Discharge, Integrated (m^3)
3 - Discharge, Integrated, Time (sec)
4 - Discharge, Maximum (m^3/s)
5 - Discharge, Maximum, Time (sec)
6 - Discharge, Duration (h)
7 - Discharge, Duration, Time (sec)
8 - Component_1, Maximum (kg/m^3)
9 - Component_1, Maximum, Time (sec)
10 - Component_2, Maximum (kg/m^3)
11 - Component_2, Maximum, Time (sec)
12 - Component_1, Transport, Integrated (kg)
13 - Component_1, Transport, Integrated, Time (sec)
14 - Component_2, Transport, Integrated (kg)
15 - Component_2, Transport, Integrated, Time (sec)
16 - Surcharge, Maximum (m^3/s)
17 - Surcharge, Maximum, Time (sec)
18 - Surcharge, Integrated (m^3)
19 - Surcharge, Integrated, Time (sec)
20 - Surcharge, Duration (h)
21 - Surcharge, Duration, Time (sec)
22 - Flow velocity, Maximum (m/s)
23 - Flow velocity, Maximum, Time (sec)
df = res.read()
df.head()
WaterLevelMaximum:A0.0327 WaterLevelMaximumTime:A0.0327 DischargeIntegrated:A0.0327 DischargeIntegratedTime:A0.0327 DischargeMaximum:A0.0327 DischargeMaximumTime:A0.0327 DischargeDuration:A0.0327 DischargeDurationTime:A0.0327 Component_1Maximum:A0.0327 Component_1MaximumTime:A0.0327 ... Component_1MaximumTime:Pump:B4.1510p2:0 Component_1MaximumTime:Pump:B4.1510p2:80.0006 Component_2Maximum:Pump:B4.1510p2:0 Component_2Maximum:Pump:B4.1510p2:80.0006 Component_2MaximumTime:Pump:B4.1510p2:0 Component_2MaximumTime:Pump:B4.1510p2:80.0006 Component_1TransportIntegrated:Pump:B4.1510p2:40.0003 Component_1TransportIntegratedTime:Pump:B4.1510p2:40.0003 Component_2TransportIntegrated:Pump:B4.1510p2:40.0003 Component_2TransportIntegratedTime:Pump:B4.1510p2:40.0003
0 -1.000000e-35 1957-01-01 4684.849609 1959-08-15 09:36:24 1.256756 1961-06-13 15:58:24 9.108004 1957-07-20 09:39:20 -1.000000e-35 1957-01-01 ... 1961-09-05 15:54:40 1957-06-11 10:27:52 50.0 50.0 1961-09-05 15:54:40 1957-06-11 10:27:52 67.307213 1961-09-05 14:31:28 33.653606 1961-09-05 14:31:28
1 -1.000000e-35 1957-01-01 4608.099609 1961-09-05 12:17:20 1.236605 1961-09-05 15:02:24 6.788862 1957-06-11 04:12:20 -1.000000e-35 1957-01-01 ... 1957-07-20 17:42:00 1957-07-20 16:33:04 50.0 50.0 1957-07-20 17:42:00 1957-07-20 16:33:04 45.068405 1961-06-13 15:44:16 22.534203 1961-06-13 15:44:16
2 -1.000000e-35 1957-01-01 3744.287842 1961-06-13 15:38:24 0.958780 1959-08-15 13:38:08 5.560763 1959-08-15 09:36:24 -1.000000e-35 1957-01-01 ... 1958-05-26 00:36:16 1958-05-26 00:44:24 50.0 50.0 1958-05-26 00:36:16 1958-05-26 00:44:24 43.389675 1958-05-25 23:16:16 21.694838 1958-05-25 23:16:16
3 -1.000000e-35 1957-01-01 3631.110596 1958-05-25 21:11:20 0.941482 1958-05-25 23:35:16 4.831801 1961-09-05 12:17:20 -1.000000e-35 1957-01-01 ... 1961-06-13 18:35:28 1961-09-05 15:54:56 50.0 50.0 1961-06-13 18:35:28 1961-09-05 15:54:56 35.251358 1959-08-15 13:26:56 17.625679 1959-08-15 13:26:56
4 -1.000000e-35 1957-01-01 3070.262939 1957-07-20 09:39:20 0.878175 1957-07-27 16:30:04 4.549961 1958-05-25 21:11:20 -1.000000e-35 1957-01-01 ... 1959-08-15 16:23:04 1959-08-15 16:04:08 50.0 50.0 1959-08-15 16:23:04 1959-08-15 16:04:08 23.928904 1957-06-04 15:09:51 11.964452 1957-06-04 15:09:51

5 rows × 1562 columns

df[['WaterLevelMaximum:B4.1200', 'WaterLevelMaximumTime:B4.1200']]
WaterLevelMaximum:B4.1200 WaterLevelMaximumTime:B4.1200
0 20.357243 1961-06-13 15:55:44
1 20.273409 1961-09-05 14:48:00
2 20.067089 1959-08-15 13:30:48
3 19.239136 1957-07-27 16:22:48
4 19.165405 1962-07-21 15:15:28
5 19.103199 1961-08-22 06:40:48
6 18.928940 1958-05-25 23:21:04
7 18.692797 1959-07-11 19:06:48
8 18.399147 1961-04-06 20:36:16
9 18.359352 1959-08-15 09:56:00
quantities = [c for c in df.columns if 'Discharge' in c and 'B4.1200l1:26.666' in c]
df[quantities]
DischargeIntegrated:B4.1200l1:26.6666 DischargeIntegratedTime:B4.1200l1:26.6666 DischargeMaximum:B4.1200l1:26.6666 DischargeMaximumTime:B4.1200l1:26.6666 DischargeDuration:B4.1200l1:26.6666 DischargeDurationTime:B4.1200l1:26.6666
0 1081.991333 1961-09-05 12:17:20 0.464411 1961-06-13 15:44:16 9.108004 1957-07-20 09:39:20
1 1048.237183 1959-08-15 09:36:24 0.436320 1959-08-15 13:27:52 6.788862 1957-06-11 04:12:20
2 908.647827 1961-06-13 15:38:24 0.377782 1961-09-05 14:41:20 5.560763 1959-08-15 09:36:24
3 815.226196 1958-05-25 21:11:20 0.352194 1961-08-22 06:39:12 4.831801 1961-09-05 12:17:20
4 664.019165 1957-07-20 09:39:20 0.328294 1959-07-11 19:05:04 4.549961 1958-05-25 21:11:20
5 508.447784 1957-06-04 14:28:20 0.325543 1957-07-27 16:21:48 4.169593 1958-05-24 19:07:20
6 501.339294 1957-06-11 04:12:20 0.314239 1958-05-25 23:18:24 4.119199 1958-11-10 13:35:20
7 490.517639 1962-07-21 13:50:24 0.312885 1962-07-21 15:14:56 3.769463 1957-09-07 22:18:20
8 418.507965 1962-06-19 12:18:24 0.298825 1961-04-06 20:34:24 3.661735 1959-07-02 03:15:20
9 356.224335 1957-07-27 16:09:20 0.286779 1961-09-25 00:51:28 3.626211 1962-06-19 12:18:24
df[
    [
        "WaterLevelMaximum:B4.1200",
        "WaterLevelMaximum:B4.1200l1:0",
        "WaterLevelMaximum:B4.1200l1:479.999",
        "WaterLevelMaximum:B4.1485",
    ]
].plot()

Chronological statistics

res = mikeio1d.open("../data/lts_monthly_statistics.res1d")
df = res.read()
df.head()
DischargeIntegratedMonthly:A0.0327 DischargeIntegratedMonthlyCount:A0.0327 DischargeIntegratedMonthlyDuration:A0.0327 Component_1TransportIntegratedMonthly:A0.0327 Component_1TransportIntegratedMonthlyCount:A0.0327 Component_1TransportIntegratedMonthlyDuration:A0.0327 Component_2TransportIntegratedMonthly:A0.0327 Component_2TransportIntegratedMonthlyCount:A0.0327 Component_2TransportIntegratedMonthlyDuration:A0.0327 DischargeIntegratedMonthly:B4.1200 ... Component_2TransportIntegratedMonthlyDuration:Pump:B4.1510p2:40.0003 DischargeIntegratedMonthlyOutlets DischargeIntegratedMonthlyWeirs DischargeIntegratedMonthlyTotalOutflow Component_1TransportIntegratedMonthlyTotalEmission Component_2TransportIntegratedMonthlyTotalEmission Component_1TransportIntegratedMonthlyOutlets Component_2TransportIntegratedMonthlyOutlets Component_1TransportIntegratedMonthlyWeirs Component_2TransportIntegratedMonthlyWeirs
1957-01-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1957-02-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1957-03-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1957-04-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1957-05-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 rows × 759 columns

quantities = [c for c in df.columns if 'Discharge' in c and 'B4.1200l1:26.666' in c]
df[quantities].head()
DischargeIntegratedMonthly:B4.1200l1:26.6666 DischargeIntegratedMonthlyCount:B4.1200l1:26.6666 DischargeIntegratedMonthlyDuration:B4.1200l1:26.6666
1957-01-01 0.0 0.0 0.0
1957-02-01 0.0 0.0 0.0
1957-03-01 0.0 0.0 0.0
1957-04-01 0.0 0.0 0.0
1957-05-01 0.0 0.0 0.0
print(quantities[0])
df[quantities[0]].plot()
DischargeIntegratedMonthly:B4.1200l1:26.6666

print(quantities[1])
df[quantities[1]].plot()
DischargeIntegratedMonthlyCount:B4.1200l1:26.6666

print(quantities[2])
df[quantities[2]].plot()
DischargeIntegratedMonthlyDuration:B4.1200l1:26.6666