result_network.ResultQuantityCollection
result_network.ResultQuantityCollection(self, result_quantities, res1d)
Class for dealing with a collection ResultQuantity objects.
ResultQuantityCollection objects are the attributes assigned to a network type like nodes, catchments, etc. For example, res1d.nodes.WaterLevel They have the ability to add queries.
Parameters
Name | Type | Description | Default |
---|---|---|---|
result_quantities |
A list of ResultQuantity objects having the same quantity id. | required | |
res1d |
Res1D | Res1D object the quantity belongs to. | required |
Attributes
Name | Description |
---|---|
name | Name of the quantity id assosciated with collection. |
timeseries_id | TimeSeriesId corresponding to ResultQuantity. |
Methods
Name | Description |
---|---|
add | Add queries to ResultNetwork.queries from a list of result quantities. |
get_data_entry | Get DataEntry corresponding to ResultQuantity. |
get_data_entry_net | Get DataEntryNet corresponding to ResultQuantity. |
get_query | Get queries corresponding to ResultQuantityCollection. |
get_timeseries_ids | Get TimeSeriesId objects corresponding to ResultQuantityCollection. |
plot | Plot the time series data. |
prettify_quantity | Get a pretty string representation of a ResultQuantity’s type and unit. |
read | Read the time series data into a data frame. |
to_csv | Extract time series data into a csv file. |
to_dataframe | Get a time series as a data frame. |
to_dfs0 | Extract time series data into a dfs0 file. |
to_txt | Extract time series data into a txt file. |
add
result_network.ResultQuantityCollection.add()
Add queries to ResultNetwork.queries from a list of result quantities.
get_data_entry
result_network.ResultQuantityCollection.get_data_entry()
Get DataEntry corresponding to ResultQuantity.
get_data_entry_net
result_network.ResultQuantityCollection.get_data_entry_net()
Get DataEntryNet corresponding to ResultQuantity.
get_query
result_network.ResultQuantityCollection.get_query()
Get queries corresponding to ResultQuantityCollection.
get_timeseries_ids
result_network.ResultQuantityCollection.get_timeseries_ids()
Get TimeSeriesId objects corresponding to ResultQuantityCollection.
plot
result_network.ResultQuantityCollection.plot(ax=None, **kwargs)
Plot the time series data.
Parameters
Name | Type | Description | Default |
---|---|---|---|
ax |
matplotlib.axes.Axes | Axes object to plot on. | None |
**kwargs |
Additional keyword arguments passed to pandas.DataFrame.plot. | {} |
Returns
Type | Description |
---|---|
matplotlib.axes.Axes | Axes object with the plot. |
prettify_quantity
result_network.ResultQuantityCollection.prettify_quantity(quantity, latex_format=False)
Get a pretty string representation of a ResultQuantity’s type and unit.
Parameters
Name | Type | Description | Default |
---|---|---|---|
quantity |
ResultQuantity | IQuantity | ResultQuantity object or DHI.Mike1D.Generic.IQuantity object. | required |
latex_format |
If True, the unit abbreviation will use LaTeX-formatted text. | False |
Returns
Type | Description |
---|---|
str | A string representation of the quantity type and unit. |
read
result_network.ResultQuantityCollection.read(column_mode=None)
Read the time series data into a data frame.
Parameters
Name | Type | Description | Default |
---|---|---|---|
column_mode |
str | ColumnMode(optional) | Specifies the type of column index of returned DataFrame. ‘all’ - column MultiIndex with levels matching TimeSeriesId objects. ‘compact’ - same as ‘all’, but removes levels with default values. ‘timeseries’ - column index of TimeSeriesId objects ‘str’ - column index of str representations of QueryData objects | None |
to_csv
result_network.ResultQuantityCollection.to_csv(file_path, time_step_skipping_number=1)
Extract time series data into a csv file.
to_dataframe
result_network.ResultQuantityCollection.to_dataframe()
Get a time series as a data frame.
to_dfs0
result_network.ResultQuantityCollection.to_dfs0(file_path, time_step_skipping_number=1)
Extract time series data into a dfs0 file.
to_txt
result_network.ResultQuantityCollection.to_txt(file_path, time_step_skipping_number=1)
Extract time series data into a txt file.