import matplotlib.pyplot as plt
import mikeio
import mikeio.generic
Generic dfs processing
Tools and methods that applies to any type of dfs files.
- mikeio.read()
- mikeio.generic: methods that read any dfs file and outputs a new dfs file of the same type
- concat: Concatenates files along the time axis
- scale: Apply scaling to any dfs file
- sum: Sum two dfs files
- diff: Calculate difference between two dfs files
- extract: Extract timesteps and/or items to a new dfs file
- time-avg: Create a temporally averaged dfs file
- quantile: Create temporal quantiles of dfs file
- concat: Concatenates files along the time axis
Concatenation
Take a look at these two files with overlapping timesteps.
= mikeio.read("../data/tide1.dfs1")
t1 t1
<mikeio.Dataset>
dims: (time:97, x:10)
time: 2019-01-01 00:00:00 - 2019-01-03 00:00:00 (97 records)
geometry: Grid1D (n=10, dx=0.06667)
items:
0: Level <Water Level> (meter)
= mikeio.read("../data/tide2.dfs1")
t2 t2
<mikeio.Dataset>
dims: (time:97, x:10)
time: 2019-01-02 00:00:00 - 2019-01-04 00:00:00 (97 records)
geometry: Grid1D (n=10, dx=0.06667)
items:
0: Level <Water Level> (meter)
Plot one of the points along the line.
0].isel(x=1).values, label="File 1")
plt.plot(t1.time,t1[0].isel(x=1).values,'k+', label="File 2")
plt.plot(t2.time,t2[ plt.legend()
=["../data/tide1.dfs1",
mikeio.generic.concat(infilenames"../data/tide2.dfs1"],
="concat.dfs1") outfilename
0%| | 0/2 [00:00<?, ?it/s]100%|██████████| 2/2 [00:00<00:00, 670.55it/s]
= mikeio.read("concat.dfs1")
c 0].isel(x=1).plot()
c[ c
<mikeio.Dataset>
dims: (time:145, x:10)
time: 2019-01-01 00:00:00 - 2019-01-04 00:00:00 (145 records)
geometry: Grid1D (n=10, dx=0.06667)
items:
0: Level <Water Level> (meter)
Difference between two files
Take difference between two dfs files with same structure - e.g. to see the difference in result between two calibration runs
= "../data/oresundHD_run1.dfsu"
fn1 = "../data/oresundHD_run2.dfsu"
fn2 = "oresundHD_difference.dfsu"
fn_diff mikeio.generic.diff(fn1, fn2, fn_diff)
0%| | 0/5 [00:00<?, ?it/s]100%|██████████| 5/5 [00:00<00:00, 3064.67it/s]
= plt.subplots(1,3, sharey=True, figsize=(12,5))
_, ax = mikeio.read(fn1, time=-1)[0]
da =0.06, vmax=0.27, ax=ax[0], title='run 1')
da.plot(vmin= mikeio.read(fn2, time=-1)[0]
da =0.06, vmax=0.27, ax=ax[1], title='run 2')
da.plot(vmin= mikeio.read(fn_diff, time=-1)[0]
da =-0.1, vmax=0.1, cmap='coolwarm', ax=ax[2], title='difference'); da.plot(vmin
Extract time steps or items
The extract() method can extract a part of a file:
- time slice by specifying start and/or end
- specific items
= "../data/tide1.dfs1"
infile "extracted.dfs1", start='2019-01-02') mikeio.generic.extract(infile,
= mikeio.read("extracted.dfs1")
e e
<mikeio.Dataset>
dims: (time:49, x:10)
time: 2019-01-02 00:00:00 - 2019-01-03 00:00:00 (49 records)
geometry: Grid1D (n=10, dx=0.06667)
items:
0: Level <Water Level> (meter)
= "../data/oresund_vertical_slice.dfsu"
infile "extracted.dfsu", items='Salinity', end=-2) mikeio.generic.extract(infile,
= mikeio.read("extracted.dfsu")
e e
<mikeio.Dataset>
dims: (time:2, element:441)
time: 1997-09-15 21:00:00 - 1997-09-16 00:00:00 (2 records)
geometry: Flexible Mesh Geometry: DfsuVerticalProfileSigmaZ
number of nodes: 550
number of elements: 441
number of layers: 9
number of sigma layers: 4
projection: UTM-33
items:
0: Salinity <Salinity> (PSU)
Scaling
Adding a constant e.g to adjust datum
= mikeio.read("../data/gebco_sound.dfs2")
ds 0].plot(); ds.Elevation[
'Elevation'][0,104,131].to_numpy() ds[
np.float32(-1.0)
This is the processing step.
"../data/gebco_sound.dfs2",
mikeio.generic.scale("gebco_sound_local_datum.dfs2",
=-2.1
offset )
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1061.04it/s]
= mikeio.read("gebco_sound_local_datum.dfs2")
ds2 'Elevation'][0].plot() ds2[
'Elevation'][0,104,131].to_numpy() ds2[
np.float32(-3.1)
Spatially varying correction
import numpy as np
= np.ones_like(ds['Elevation'][0].to_numpy())
factor factor.shape
(264, 216)
Add some spatially varying factors, exaggerated values for educational purpose.
0:100] = 5.3
factor[:,0:40,] = 0.1
factor[150:,150:] = 10.7
factor[
plt.imshow(factor); plt.colorbar()
The 2d array must first be flipped upside down and then converted to a 1d vector using numpy.ndarray.flatten to match how data is stored in dfs files.
= np.flipud(factor)
factor_ud = factor_ud.flatten()
factor_vec "../data/gebco_sound.dfs2",
mikeio.generic.scale("gebco_sound_spatial.dfs2",
=factor_vec
factor )
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1262.58it/s]
= mikeio.read("gebco_sound_spatial.dfs2")
ds3 0].plot(); ds3.Elevation[
Time average
= "../data/NorthSea_HD_and_windspeed.dfsu"
fn = "Avg_NorthSea_HD_and_windspeed.dfsu"
fn_avg mikeio.generic.avg_time(fn, fn_avg)
0%| | 0/66 [00:00<?, ?it/s]100%|██████████| 66/66 [00:00<00:00, 19305.67it/s]
= mikeio.read(fn)
ds =0).describe() # alternative way of getting the time average ds.mean(axis
Surface elevation | Wind speed | |
---|---|---|
count | 958.000000 | 958.000000 |
mean | 0.449857 | 12.772706 |
std | 0.178127 | 2.367667 |
min | 0.114355 | 6.498364 |
25% | 0.373691 | 11.199439 |
50% | 0.431747 | 12.984060 |
75% | 0.479224 | 14.658077 |
max | 1.202888 | 16.677952 |
= mikeio.read(fn_avg)
ds_avg ds_avg.describe()
Surface elevation | Wind speed | |
---|---|---|
count | 958.000000 | 958.000000 |
mean | 0.449857 | 12.772706 |
std | 0.178127 | 2.367667 |
min | 0.114355 | 6.498364 |
25% | 0.373691 | 11.199439 |
50% | 0.431747 | 12.984060 |
75% | 0.479224 | 14.658077 |
max | 1.202888 | 16.677952 |
Quantile
Example that calculates the 25%, 50% and 75% percentile for all items in a dfsu file.
= "../data/NorthSea_HD_and_windspeed.dfsu"
fn = "Q_NorthSea_HD_and_windspeed.dfsu"
fn_q =[0.25,0.5,0.75]) mikeio.generic.quantile(fn, fn_q, q
= mikeio.read(fn_q)
ds ds
<mikeio.Dataset>
dims: (time:1, element:958)
time: 2017-10-27 00:00:00 (time-invariant)
geometry: Dfsu2D (958 elements, 570 nodes)
items:
0: Quantile 0.25, Surface elevation <Surface Elevation> (meter)
1: Quantile 0.5, Surface elevation <Surface Elevation> (meter)
2: Quantile 0.75, Surface elevation <Surface Elevation> (meter)
3: Quantile 0.25, Wind speed <Wind speed> (meter per sec)
4: Quantile 0.5, Wind speed <Wind speed> (meter per sec)
5: Quantile 0.75, Wind speed <Wind speed> (meter per sec)
= ds["Quantile 0.75, Wind speed"]
da_q75 ="75th percentile, wind speed", label="m/s") da_q75.plot(title
Clean up
import os
"concat.dfs1")
os.remove("oresundHD_difference.dfsu")
os.remove("extracted.dfs1")
os.remove("extracted.dfsu")
os.remove("gebco_sound_local_datum.dfs2")
os.remove("gebco_sound_spatial.dfs2")
os.remove("Avg_NorthSea_HD_and_windspeed.dfsu")
os.remove( os.remove(fn_q)