dfsu.Dfsu2DH
self, filename) dfsu.Dfsu2DH(
Attributes
Name | Description |
---|---|
deletevalue | File delete value. |
end_time | File end time. |
items | List of items. |
n_items | Number of items. |
n_timesteps | Number of time steps. |
start_time | File start time. |
timestep | Time step size in seconds. |
Methods
Name | Description |
---|---|
append | Append data to an existing dfsu file. |
extract_track | Extract track data from a dfsu file. |
get_overset_grid | get a 2d grid that covers the domain by specifying spacing or shape. |
read | Read data from a dfsu file. |
append
=True) dfsu.Dfsu2DH.append(ds, validate
Append data to an existing dfsu file.
Parameters
Name | Type | Description | Default |
---|---|---|---|
ds | Dataset | Dataset to be appended | required |
validate | bool | Validate that the items and geometry match, by default True | True |
extract_track
dfsu.Dfsu2DH.extract_track(
track,=None,
items='nearest',
method=np.float32,
dtype )
Extract track data from a dfsu file.
Parameters
Name | Type | Description | Default |
---|---|---|---|
track | pd.DataFrame | with DatetimeIndex and (x, y) of track points as first two columns x,y coordinates must be in same coordinate system as dfsu | required |
track | pd.DataFrame | filename of csv or dfs0 file containing t,x,y | required |
items | int | str | Sequence[int | str] | None | Extract only selected items, by number (0-based), or by name | None |
method | Literal['nearest', 'inverse_distance'] | Spatial interpolation method (‘nearest’ or ‘inverse_distance’) default=‘nearest’ | 'nearest' |
dtype | Any | Data type to read, by default np.float32 | np.float32 |
Returns
Name | Type | Description |
---|---|---|
Dataset | A dataset with data dimension t The first two items will be x- and y- coordinates of track |
Examples
>>> dfsu = mikeio.open("tests/testdata/NorthSea_HD_and_windspeed.dfsu")
>>> ds = dfsu.extract_track("tests/testdata/altimetry_NorthSea_20171027.csv")
>>> ds
<mikeio.Dataset>
1115)
dims: (time:2017-10-26 04:37:37 - 2017-10-30 20:54:47 (1115 non-equidistant records)
time:
geometry: GeometryUndefined()
items:0: Longitude <Undefined> (undefined)
1: Latitude <Undefined> (undefined)
2: Surface elevation <Surface Elevation> (meter)
3: Wind speed <Wind speed> (meter per sec)
get_overset_grid
=None, dy=None, nx=None, ny=None, buffer=0.0) dfsu.Dfsu2DH.get_overset_grid(dx
get a 2d grid that covers the domain by specifying spacing or shape.
Parameters
Name | Type | Description | Default |
---|---|---|---|
dx | float | grid resolution in x-direction (or in x- and y-direction) | None |
dy | float | grid resolution in y-direction | None |
nx | int | number of points in x-direction, by default None (the value will be inferred) | None |
ny | int | number of points in y-direction, by default None (the value will be inferred) | None |
buffer | float | positive to make the area larger, default=0 can be set to a small negative value to avoid NaN values all around the domain. | 0.0 |
Returns
Name | Type | Description |
---|---|---|
<mikeio.Grid2D> | 2d grid |
read
dfsu.Dfsu2DH.read(=None,
items=None,
time=None,
elements=None,
area=None,
x=None,
y=False,
keepdims=np.float32,
dtype=True,
error_bad_data=np.nan,
fill_bad_data_value )
Read data from a dfsu file.
Parameters
Name | Type | Description | Default |
---|---|---|---|
items | str | int | Sequence[str | int] | None | Read only selected items, by number (0-based), or by name | None |
time | int | str | slice | None | Read only selected time steps, by default None (=all) | None |
keepdims | bool | When reading a single time step only, should the time-dimension be kept in the returned Dataset? by default: False | False |
area | tuple[float, float, float, float] | None | Read only data inside (horizontal) area given as a bounding box (tuple with left, lower, right, upper) or as list of coordinates for a polygon, by default None | None |
x | float | None | Read only data for elements containing the (x,y) points(s), by default None | None |
y | float | None | Read only data for elements containing the (x,y) points(s), by default None | None |
elements | Sequence[int] | np.ndarray | None | Read only selected element ids, by default None | None |
error_bad_data | bool | raise error if data is corrupt, by default True, | True |
fill_bad_data_value | float | fill value for to impute corrupt data, used in conjunction with error_bad_data=False default np.nan | np.nan |
dtype | Any | Data type to read, by default np.float32 | np.float32 |
Returns
Name | Type | Description |
---|---|---|
Dataset | A Dataset with data dimensions [t,elements] |