GradientDetector
GradientDetector(max_gradient=np.inf, direction='both')
Detect abrupt changes in time series data.
Requires data with a DatetimeIndex. Calculates rate of change per second.
Parameters
| max_gradient |
float |
Maximum rate of change per second. |
np.inf |
| direction |
(both, positive, negative) |
Direction of change to detect. ‘positive’ detects only increases, ‘negative’ detects only decreases, ‘both’ detects changes in either direction. |
'both' |
Methods
| detect |
Detect anomalies |
| fit |
Set detector parameters based on data. |
| save |
Save a detector for later use. |
| validate |
Check that input data is in correct format and possibly adjust. |
detect
GradientDetector.detect(data)
Detect anomalies
Parameters
| data |
Union[pd.Series, pd.DataFrame] |
Time series data with possible anomalies |
required |
Returns
|
pd.Series or pd.DataFrame |
Time series with bools, True == anomaly. |
fit
GradientDetector.fit(data)
Set detector parameters based on data.
Parameters
| data |
Union[pd.Series, pd.DataFrame] |
Normal (non-anomalous) time series data for training. If DataFrame, must contain exactly one column |
required |
save
GradientDetector.save(path)
Save a detector for later use.
Parameters
| path |
str or Path |
File path to save the detector to. |
required |
validate
GradientDetector.validate(data)
Check that input data is in correct format and possibly adjust.
Parameters
| data |
pd.Series or pd.DataFrame |
Input data to validate. |
required |
Returns
|
pd.DataFrame |
Validated data. |
Raises
|
WrongInputDataTypeError |
If data is not a pd.Series or pd.DataFrame. |