DiffDetector
DiffDetector(max_diff=np.inf, direction='both')
Detect sudden shifts in data, irrespective of time axis.
Parameters
| max_diff |
float |
Maximum change threshold between consecutive points. |
np.inf |
| direction |
(both, positive, negative) |
Direction of change to detect. ‘positive’ detects only increases, ‘negative’ detects only decreases, ‘both’ detects changes in either direction. |
'both' |
See Also
GradientDetector : Similar functionality but considers actual time between data points.
Methods
| detect |
Detect anomalies |
| fit |
Set detector parameters based on data. |
| save |
Save a detector for later use. |
| validate |
Check that input data is in correct format and possibly adjust. |
detect
DiffDetector.detect(data)
Detect anomalies
Parameters
| data |
Union[pd.Series, pd.DataFrame] |
Time series data with possible anomalies |
required |
Returns
|
pd.Series or pd.DataFrame |
Time series with bools, True == anomaly. |
fit
Set detector parameters based on data.
Parameters
| data |
Union[pd.Series, pd.DataFrame] |
Normal (non-anomalous) time series data for training. If DataFrame, must contain exactly one column |
required |
save
Save a detector for later use.
Parameters
| path |
str or Path |
File path to save the detector to. |
required |
validate
DiffDetector.validate(data)
Check that input data is in correct format and possibly adjust.
Parameters
| data |
pd.Series or pd.DataFrame |
Input data to validate. |
required |
Returns
|
pd.DataFrame |
Validated data. |
Raises
|
WrongInputDataTypeError |
If data is not a pd.Series or pd.DataFrame. |