ConstantValueDetector

ConstantValueDetector(window_size=3, threshold=1e-07)

Detect contiguous periods of constant values within a configurable time window.

Commonly caused by sensor failures, which get stuck at a constant level.

Parameters

Name Type Description Default
window_size int Number of consecutive points to evaluate. 3
threshold float Maximum variation (max - min) within window to consider constant. 1e-7

Methods

Name Description
detect Detect anomalies
fit Set detector parameters based on data.
save Save a detector for later use.
validate Check that input data is in correct format and possibly adjust.

detect

ConstantValueDetector.detect(data)

Detect anomalies

Parameters

Name Type Description Default
data Union[pd.Series, pd.DataFrame] Time series data with possible anomalies required

Returns

Name Type Description
pd.Series or pd.DataFrame Time series with bools, True == anomaly.

fit

ConstantValueDetector.fit(data)

Set detector parameters based on data.

Parameters

Name Type Description Default
data Union[pd.Series, pd.DataFrame] Normal (non-anomalous) time series data for training. If DataFrame, must contain exactly one column required

Returns

Name Type Description
Self

save

ConstantValueDetector.save(path)

Save a detector for later use.

Parameters

Name Type Description Default
path str or Path File path to save the detector to. required

validate

ConstantValueDetector.validate(data)

Check that input data is in correct format and possibly adjust.

Parameters

Name Type Description Default
data pd.Series or pd.DataFrame Input data to validate. required

Returns

Name Type Description
pd.DataFrame Validated data.

Raises

Name Type Description
WrongInputDataTypeError If data is not a pd.Series or pd.DataFrame.