ComparerCollection
The ComparerCollection
is one of the main objects of the modelskill
package. It is a collection of Comparer
objects and created either by the match()
method, by passing a list of Comparers to the ComparerCollection
constructor, or by reading a config file using the from_config()
function.
Main functionality:
- selecting/filtering data
- skill assessment
skill()
mean_skill()
gridded_skill()
(for track observations)
- plotting
- load/save/export data
modelskill.ComparerCollection
Bases: Mapping
, Scoreable
Collection of comparers, constructed by calling the modelskill.match
method or by initializing with a list of comparers.
NOTE: In case of multiple model results with different time coverage, only the overlapping time period will be used! (intersection)
Examples:
>>> import modelskill as ms
>>> mr = ms.DfsuModelResult("Oresund2D.dfsu", item=0)
>>> o1 = ms.PointObservation("klagshamn.dfs0", item=0, x=366844, y=6154291, name="Klagshamn")
>>> o2 = ms.PointObservation("drogden.dfs0", item=0, x=355568.0, y=6156863.0)
>>> cmp1 = ms.match(o1, mr) # Comparer
>>> cmp2 = ms.match(o2, mr) # Comparer
>>> ccA = ms.ComparerCollection([cmp1, cmp2])
>>> ccB = ms.match(obs=[o1, o2], mod=mr)
>>> sk = ccB.skill()
>>> ccB["Klagshamn"].plot.timeseries()
Source code in modelskill/comparison/_collection.py
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 |
|
plot
instance-attribute
filter_by_attrs
Filter by comparer attrs similar to xarray.Dataset.filter_by_attrs
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**kwargs |
Any
|
Filtering by comparer attrs similar to xarray.Dataset.filter_by_attrs
e.g. |
{}
|
Returns:
Type | Description |
---|---|
ComparerCollection
|
New ComparerCollection with selected data. |
Examples:
>>> cc = ms.match([HKNA, EPL, alti], mr)
>>> cc.filter_by_attrs(gtype='track')
<ComparerCollection>
Comparer: alti
Source code in modelskill/comparison/_collection.py
gridded_skill
Skill assessment of model(s) on a regular spatial grid.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bins |
int
|
criteria to bin x and y by, argument bins to pd.cut(), default 5 define different bins for x and y a tuple e.g.: bins = 5, bins = (5,[2,3,5]) |
5
|
binsize |
float
|
bin size for x and y dimension, overwrites bins creates bins with reference to round(mean(x)), round(mean(y)) |
None
|
by |
(str, List[str])
|
group by, by default ["model", "observation"]
|
None
|
metrics |
list
|
list of modelskill.metrics, by default modelskill.options.metrics.list |
None
|
n_min |
int
|
minimum number of observations in a grid cell;
cells with fewer observations get a score of |
None
|
Returns:
Type | Description |
---|---|
SkillGrid
|
skill assessment as a SkillGrid object |
See also
skill a method for aggregated skill assessment
Examples:
>>> import modelskill as ms
>>> cc = ms.match([HKNA,EPL,c2], mr) # with satellite track measurements
>>> gs = cc.gridded_skill(metrics='bias')
>>> gs.data
<xarray.Dataset>
Dimensions: (x: 5, y: 5)
Coordinates:
observation 'alti'
* x (x) float64 -0.436 1.543 3.517 5.492 7.466
* y (y) float64 50.6 51.66 52.7 53.75 54.8
Data variables:
n (x, y) int32 3 0 0 14 37 17 50 36 72 ... 0 0 15 20 0 0 0 28 76
bias (x, y) float64 -0.02626 nan nan ... nan 0.06785 -0.1143
>>> gs = cc.gridded_skill(binsize=0.5)
>>> gs.data.coords
Coordinates:
observation 'alti'
* x (x) float64 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5
* y (y) float64 51.5 52.5 53.5 54.5 55.5 56.5
Source code in modelskill/comparison/_collection.py
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 |
|
load
staticmethod
Load a ComparerCollection from a zip file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename |
str or Path
|
Filename of the zip file. |
required |
Returns:
Type | Description |
---|---|
ComparerCollection
|
The loaded ComparerCollection. |
Examples:
>>> cc = ms.match(obs, mod)
>>> cc.save("my_comparer_collection.msk")
>>> cc2 = ms.ComparerCollection.load("my_comparer_collection.msk")
Source code in modelskill/comparison/_collection.py
mean_skill
Weighted mean of skills
First, the skill is calculated per observation, the weighted mean of the skills is then found.
Warning: This method is NOT the mean skill of all observational points! (mean_skill_points)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weights |
str or List(float) or Dict(str, float)
|
weighting of observations, by default None
|
None
|
metrics |
list
|
list of modelskill.metrics, by default modelskill.options.metrics.list |
None
|
Returns:
Type | Description |
---|---|
SkillTable
|
mean skill assessment as a SkillTable object |
See also
skill skill assessment per observation mean_skill_points skill assessment pooling all observation points together
Examples:
>>> import modelskill as ms
>>> cc = ms.match([HKNA,EPL,c2], mod=HKZN_local)
>>> cc.mean_skill().round(2)
n bias rmse urmse mae cc si r2
HKZN_local 564 -0.09 0.31 0.28 0.24 0.97 0.09 0.99
>>> sk = cc.mean_skill(weights="equal")
>>> sk = cc.mean_skill(weights="points")
>>> sk = cc.mean_skill(weights={"EPL": 2.0}) # more weight on EPL, others=1.0
Source code in modelskill/comparison/_collection.py
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 |
|
query
Select data based on a query.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
str
|
Query string. See pandas.DataFrame.query() for details. |
required |
Returns:
Type | Description |
---|---|
ComparerCollection
|
New ComparerCollection with selected data. |
Source code in modelskill/comparison/_collection.py
rename
Rename observation, model or auxiliary data variables
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mapping |
dict
|
mapping of old names to new names |
required |
Returns:
Type | Description |
---|---|
ComparerCollection
|
|
Examples:
>>> cc = ms.match([o1, o2], [mr1, mr2])
>>> cc.mod_names
['mr1', 'mr2']
>>> cc2 = cc.rename({'mr1': 'model1'})
>>> cc2.mod_names
['model1', 'mr2']
Source code in modelskill/comparison/_collection.py
save
Save the ComparerCollection to a zip file.
Each comparer is stored as a netcdf file in the zip file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename |
str or Path
|
Filename of the zip file. |
required |
Examples:
Source code in modelskill/comparison/_collection.py
score
Weighted mean score of model(s) over all observations
Wrapping mean_skill() with a single metric.
NOTE: will take simple mean over different quantities!
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weights |
str or List(float) or Dict(str, float)
|
weighting of observations, by default None
|
required |
metric |
list
|
a single metric from modelskill.metrics, by default rmse |
rmse
|
Returns:
Type | Description |
---|---|
Dict[str, float]
|
mean of skills score as a single number (for each model) |
See also
skill skill assessment per observation mean_skill weighted mean of skills assessment mean_skill_points skill assessment pooling all observation points together
Examples:
>>> import modelskill as ms
>>> cc = ms.match([o1, o2], mod)
>>> cc.score()
{'mod': 0.30681206}
>>> cc.score(weights=[0.1,0.1,0.8])
{'mod': 0.3383011631797379}
Source code in modelskill/comparison/_collection.py
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 |
|
sel
sel(model=None, observation=None, quantity=None, start=None, end=None, time=None, area=None, variable=None, **kwargs)
Select data based on model, time and/or area.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
str or int or list of str or list of int
|
Model name or index. If None, all models are selected. |
None
|
observation |
str or int or list of str or list of int
|
Observation name or index. If None, all observations are selected. |
None
|
quantity |
str or int or list of str or list of int
|
Quantity name or index. If None, all quantities are selected. |
None
|
start |
str or datetime
|
Start time. If None, all times are selected. |
None
|
end |
str or datetime
|
End time. If None, all times are selected. |
None
|
time |
str or datetime
|
Time. If None, all times are selected. |
None
|
area |
list of float
|
bbox: [x0, y0, x1, y1] or Polygon. If None, all areas are selected. |
None
|
**kwargs |
Any
|
Filtering by comparer attrs similar to xarray.Dataset.filter_by_attrs
e.g. |
{}
|
Returns:
Type | Description |
---|---|
ComparerCollection
|
New ComparerCollection with selected data. |
Source code in modelskill/comparison/_collection.py
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
|
skill
Aggregated skill assessment of model(s)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
by |
str or List[str]
|
group by, by default ["model", "observation"]
|
None
|
metrics |
list
|
list of modelskill.metrics (or str), by default modelskill.options.metrics.list |
None
|
observed |
bool
|
This only applies if any of the groupers are Categoricals.
|
False
|
Returns:
Type | Description |
---|---|
SkillTable
|
skill assessment as a SkillTable object |
See also
sel a method for filtering/selecting data
Examples:
>>> import modelskill as ms
>>> cc = ms.match([HKNA,EPL,c2], mr)
>>> cc.skill().round(2)
n bias rmse urmse mae cc si r2
observation
HKNA 385 -0.20 0.35 0.29 0.25 0.97 0.09 0.99
EPL 66 -0.08 0.22 0.20 0.18 0.97 0.07 0.99
c2 113 -0.00 0.35 0.35 0.29 0.97 0.12 0.99
>>> cc.sel(observation='c2', start='2017-10-28').skill().round(2)
n bias rmse urmse mae cc si r2
observation
c2 41 0.33 0.41 0.25 0.36 0.96 0.06 0.99
>>> cc.skill(by='freq:D').round(2)
n bias rmse urmse mae cc si r2
2017-10-27 239 -0.15 0.25 0.21 0.20 0.72 0.10 0.98
2017-10-28 162 -0.07 0.19 0.18 0.16 0.96 0.06 1.00
2017-10-29 163 -0.21 0.52 0.47 0.42 0.79 0.11 0.99
Source code in modelskill/comparison/_collection.py
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
|
modelskill.comparison._collection_plotter.ComparerCollectionPlotter
Plotter for ComparerCollection
Examples:
Source code in modelskill/comparison/_collection_plotter.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 |
|
box
Plot box plot of observations and model data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ax |
Axes
|
matplotlib axes, by default None |
None
|
figsize |
tuple
|
width and height of the figure, by default None |
None
|
title |
str
|
plot title, by default None |
None
|
**kwargs |
passed to pandas.DataFrame.plot.box() |
{}
|
Returns:
Type | Description |
---|---|
Axes
|
matplotlib axes |
Examples:
Source code in modelskill/comparison/_collection_plotter.py
hist
Plot histogram of specific model and all observations.
Wraps pandas.DataFrame hist() method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bins |
int
|
number of bins, by default 100 |
100
|
title |
str
|
plot title, default: observation name |
None
|
density |
bool
|
If True, draw and return a probability density, by default True |
True
|
alpha |
float
|
alpha transparency fraction, by default 0.5 |
0.5
|
ax |
matplotlib axes
|
axes to plot on, by default None |
None
|
figsize |
tuple
|
width and height of the figure, by default None |
None
|
**kwargs |
other keyword arguments to df.hist() |
{}
|
Returns:
Type | Description |
---|---|
matplotlib axes
|
|
Examples:
See also
pandas.Series.hist matplotlib.axes.Axes.hist
Source code in modelskill/comparison/_collection_plotter.py
kde
Plot kernel density estimate of observation and model data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ax |
Axes
|
matplotlib axes, by default None |
None
|
figsize |
tuple
|
width and height of the figure, by default None |
None
|
title |
str
|
plot title, by default None |
None
|
**kwargs |
passed to pandas.DataFrame.plot.kde() |
{}
|
Returns:
Type | Description |
---|---|
Axes
|
matplotlib axes |
Examples:
Source code in modelskill/comparison/_collection_plotter.py
scatter
scatter(*, model=None, bins=120, quantiles=None, fit_to_quantiles=False, show_points=None, show_hist=None, show_density=None, norm=None, backend='matplotlib', figsize=(8, 8), xlim=None, ylim=None, reg_method='ols', title=None, xlabel=None, ylabel=None, skill_table=None, ax=None, **kwargs)
Scatter plot showing compared data: observation vs modelled Optionally, with density histogram.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bins |
int | float
|
bins for the 2D histogram on the background. By default 20 bins. if int, represents the number of bins of 2D if float, represents the bin size if sequence (list of int or float), represents the bin edges |
120
|
quantiles |
int | Sequence[float] | None
|
number of quantiles for QQ-plot, by default None and will depend on the scatter data length (10, 100 or 1000); if int, this is the number of points; if sequence (list of floats), represents the desired quantiles (from 0 to 1) |
None
|
fit_to_quantiles |
bool
|
by default the regression line is fitted to all data, if True, it is fitted to the quantiles which can be useful to represent the extremes of the distribution, by default False |
False
|
show_points |
(bool, int, float)
|
Should the scatter points be displayed? None means: show all points if fewer than 1e4, otherwise show 1e4 sample points, by default None. float: fraction of points to show on plot from 0 to 1. e.g. 0.5 shows 50% of the points. int: if 'n' (int) given, then 'n' points will be displayed, randomly selected |
None
|
show_hist |
bool
|
show the data density as a a 2d histogram, by default None |
None
|
show_density |
Optional[bool]
|
show the data density as a colormap of the scatter, by default
None. If both |
None
|
norm |
matplotlib.colors norm
|
colormap normalization. If None, defaults to matplotlib.colors.PowerNorm(vmin=1, gamma=0.5) |
None
|
backend |
str
|
use "plotly" (interactive) or "matplotlib" backend, by default "matplotlib" |
'matplotlib'
|
figsize |
tuple
|
width and height of the figure, by default (8, 8) |
(8, 8)
|
xlim |
tuple
|
plot range for the observation (xmin, xmax), by default None |
None
|
ylim |
tuple
|
plot range for the model (ymin, ymax), by default None |
None
|
reg_method |
str or bool
|
method for determining the regression line "ols" : ordinary least squares regression "odr" : orthogonal distance regression, False : no regression line, by default "ols" |
'ols'
|
title |
str
|
plot title, by default None |
None
|
xlabel |
str
|
x-label text on plot, by default None |
None
|
ylabel |
str
|
y-label text on plot, by default None |
None
|
skill_table |
(str, List[str], bool)
|
list of modelskill.metrics or boolean, if True then by default modelskill.options.metrics.list. This kword adds a box at the right of the scatter plot, by default False |
None
|
ax |
matplotlib axes
|
axes to plot on, by default None |
None
|
**kwargs |
other keyword arguments to matplotlib.pyplot.scatter() |
{}
|
Examples:
>>> cc.plot.scatter()
>>> cc.plot.scatter(bins=0.2, backend='plotly')
>>> cc.plot.scatter(show_points=False, title='no points')
>>> cc.plot.scatter(xlabel='all observations', ylabel='my model')
>>> cc.sel(model='HKZN_v2').plot.scatter(figsize=(10, 10))
>>> cc.sel(observations=['c2','HKNA']).plot.scatter()
Source code in modelskill/comparison/_collection_plotter.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
|
taylor
taylor(*, normalize_std=False, aggregate_observations=True, figsize=(7, 7), marker='o', marker_size=6.0, title='Taylor diagram')
Taylor diagram showing model std and correlation to observation in a single-quadrant polar plot, with r=std and theta=arccos(cc).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
normalize_std |
bool
|
plot model std normalized with observation std, default False |
False
|
aggregate_observations |
bool
|
should multiple observations be aggregated before plotting (or shown individually), default True |
True
|
figsize |
tuple
|
width and height of the figure (should be square), by default (7, 7) |
(7, 7)
|
marker |
str
|
marker type e.g. "x", "*", by default "o" |
'o'
|
marker_size |
float
|
size of the marker, by default 6 |
6.0
|
title |
str
|
title of the plot, by default "Taylor diagram" |
'Taylor diagram'
|
Returns:
Type | Description |
---|---|
Figure
|
|
Examples:
>>> cc.plot.taylor()
>>> cc.plot.taylor(observation="c2")
>>> cc.plot.taylor(start="2017-10-28", figsize=(5,5))
References
Copin, Y. (2018). https://gist.github.com/ycopin/3342888, Yannick Copin yannick.copin@laposte.net
Source code in modelskill/comparison/_collection_plotter.py
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
|